Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Min Dong and Liang-Dong Sun*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
dongmin-qitai@sohu.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.045$
$w R$ factor $=0.119$
Data-to-parameter ratio $=11.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Methylthiazole-5-carbaldehyde

The title compound, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOS}$, was synthesized by oxidation of 5 -(β-hydroxyethyl)-4-methylthiazole, resulting in the breaking of a $\mathrm{C}-\mathrm{C}$ bond. The non- H atoms of the molecule are almost coplanar. In the crystal structure, no short contacts are observed between symmetry-related molecules.

Comment

The title compound, (I), is used as a spice, and although its structure is simple there are not many literature references to it. It can be obtained from 4-methylthiazole-5-carbonitrile on reaction with tin(II) dichloride (Harington \& Moggridge, 1939). It can also be prepared from 5-(β-hydroxyethyl)-4methylthiazole with pyridinium dichromate (White \& Spencer, 1982), and from N-benzenesulfonyl- N-(4-methyl-thiazole-5-carbonyl)hydrazine (Song et al., 2004) as shown by Campaigne et al. (1959).

(I)

The molecular structure is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Atoms C2, C3, C5, N1 and S1 are almost coplanar, forming a five-membered ring with a mean deviation of 0.0047 (4) \AA. The $\mathrm{O} 1-\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{S} 1$ torsion angle is $3.9(6)^{\circ}$, indicating that the aldehyde group is approximately coplanar with the five-membered ring. Similarly, atom C 4 deviates from the ring plane by 0.0029 (4) A. Thus the whole molecule, except for methyl H atoms, is essentially planar, with maximum deviations of $0.0284 \AA$ for atoms C1 and O1. Owing to the presence of the heteroatoms in the five-membered ring, the $\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$ angle is $110.2(3)^{\circ}$, deviating from the normal $s p^{2}$-hybridized value. In the crystal structure, there are no significant interactions (intermolecular distances < $3.3 \AA$) observed between symmetry-related molecules.

Experimental

The title compound was prepared according to the procedure of White \& Spencer (1982). The reaction residue was extracted with diethyl ether. All extracts were filtered by flash chromatography. The filtrate was evaporated to dryness in vacuo and sublimed (m.p. 341343 K). Single crystals suitable for crystallographic analysis were

Received 22 June 2005
Accepted 20 July 2005
Online 27 July 2005

Figure 1
View of the molecule structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
obtained by slow evaporation of an ethyl- n-hexane solution (1:5 v/v).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 10.18(s, 1 \mathrm{H}), 9.02(s, 1 \mathrm{H}), 2.79(s, 3 \mathrm{H})$.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOS}$
$M_{r}=127.17$
Orthorhombic, Pna $_{1}$
$a=22.574(8) \AA$
$b=3.9269(15) \AA$
$c=6.626(2) \AA$
$V=587.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.438 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector	882 independent reflections
\quad diffractometer	685 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.098$
Absorption correction: multi-scan	$\theta_{\max }=26.4^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-28 \rightarrow 28$
$T_{\min }=0.908, T_{\max }=0.932$	$k=-4 \rightarrow 4$
2830 measured reflections	$l=-4 \rightarrow 8$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.119$
$S=1.16$
882 reflections
75 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0479 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 233 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.00(17)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$110.2(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$-3.9(6)$

All H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$. For the CH groups, $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ (carrier atom), and for the methyl groups, they were set at $1.5 U_{\text {eq }}$ (carrier atom).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Campaigne, E., Thompson, R. L. \& Van Werth, J. E. (1959). J. Med. Pharm. Chem. 1, 577-594.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harington, C. R. \& Moggridge, R. C. G. (1939). J. Chem. Soc. pp. 443-445.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, Q.-B., Jin, Z.-M., Wang, H.-B. \& Jiang, B. (2004). Acta Cryst. E60, o1292o1293.
White, R. L. \& Spencer, I. D. (1982). J. Am. Chem. Soc. 104, 4934-4943

